Меню Рубрики

Технологии проекторов: DLP, LCD (3LCD), LCoS. Технологии проекторов: LCD (3LCD), DLP, LCoS Sxrd технология

Является третьей по распространенности после технологий DLP и 3LCD (LCD) , но занимает значительно меньшую долю рынка.

Синонимами LCoS являются аббревиатуры D-ILA (англ. Direct Drive Image Light Amplifier ) компании JVC и SXRD (англ. Silicon X-tal Reflective Display ) компании Sony . D-ILA - официально зарегистрированный товарный знак компании JVC, который означает, что в данном продукте применена оригинальная разработка на основе дисплея выполненного по технологии LCoS, сетчатого поляризационного фильтра и ртутной лампы . D-ILA подразумевает трёхчиповое LCoS-решение. Также часто можно встретить аббревиатуру HD-ILA. SXRD - зарегистрированный торговый знак Sony для продукции, сделанной с использованием технологии LCoS.

Принцип технологии

Принцип работы современного LCoS-проектора близок к 3LCD, но в отличие от последней использует не просветные ЖК-матрицы, а отражающие. Так же, как и DLP-технологии, LCoS использует эпипроекцию вместо традиционной диапроекции, свойственной LCD.

На полупроводниковой подложке LCoS-кристалла расположен отражающий слой, поверх которого находится жидкокристаллическая матрица и поляризатор. Под воздействием электрических сигналов жидкие кристаллы либо закрывают отражающую поверхность, либо открываются, позволяя свету от внешнего направленного источника отражаться от зеркальной подложки кристалла.

Как и в LCD-проекторах, в LCoS-проекторах сегодня используются в основном трёхчиповые схемы на основе монохромных LCoS-матриц. Так же, как и в технологии 3LCD для формирования цветного изображения обычно используются три кристалла LCoS, призма , дихроичные зеркала и светофильтры красного, синего и зелёного цветов.

Тем не менее, существуют одночиповые решения, в которых цветное изображение получается использованием трех мощных цветных быстро переключаемых светодиодов, последовательно дающих свет красного, зеленого и синего цвета, такие решения выпускает фирма Philips . Мощность их света невелика.

В конце 1990-х годов компания JVC предлагала одночиповые решения на основе цветных матриц LCoS. В них световой поток разбивался на составляющие RGB непосредственно в самой матрице при помощи фильтра HCF (англ. Hologram Color Filter - голографический цветовой фильтр ). Эта технология получила название SD-ILA (англ. single D-ILA ). Также одноматричные решения разрабатывал и Philips.

Но одночиповые LCoS-проекторы не получили широкого распространения из-за ряда недостатков: трехкратные потери светового потока при прохождении фильтра, что в том числе накладывало ограничения по причине перегрева матрицы, невысокое качество цветопередачи, более сложная технология производства цветных LCoS-чипов.

История

Предыстория появления технологии

В 1972 в лаборатории Hughes Research Labs авиастроительной корпорации Говарда Хьюза Hughes Aircraft Company, которая в то время являлась центром самых передовых исследований в области оптики и электроники, был изобретен LCLV (англ. Liquid Cristal Light Valve - жидкокристаллический оптический модулятор). Впервые технология LCLV была использована для отображения информации на больших экранах в командных центрах управления ВМФ США. Тогда эти устройства могли отображать только статическую информацию.

Развитие технологии продолжалось и термин LCLV был заменен на англ. Image Light Amplifier (ILA) , как более подходящий.

ILA отличается от D-ILA тем, что управление жидкими кристаллами осуществляется с помощью фоторезиста , на который подается модулирующий луч, создаваемый электронно-лучевой трубкой.

В начале 1990-х компании Hughes и JVC решили объединить усилия по работе над технологией ILA. 1 сентября 1992 стало официальной датой образования совместного предприятия Hughes-JVC Technology Corp. Впервые коммерческий проектор на основе технологии ILA были продемонстрирован компанией JVC в 1993 году. В течение 1990-х годов было продано свыше 3000 таких проекторов.

Использование электронно-лучевой трубки в качестве модулятора изображения в устройствах ILA накладывало ограничения на разрешающую способность, габариты и стоимость устройства и требовала сложной юстировки оптических трактов. Поэтому JVC продолжает исследования для создания принципиально новой отражающей матрицы, которая решила бы эти проблемы, сохранив достоинства технологии. В 1998 году компания продемонстрировала первый проектор, сделанный по технологии D-ILA, в котором модулирующее изображение устройство в виде связки «луч ЭЛТ - фоторезист» заменено на управляющие КМОП -элементы, имплементированные в полупроводниковую структуру подложки - отсюда и название технологии «direct drive ILA» - ILA с прямым управлением. Иногда D-ILA расшифровывают как «digital ILA» (цифровой ILA), это не совсем верно, но так же правильно отражает суть изменений технологии D-ILA от управляемой аналоговым устройством (ЭЛТ) ILA.

Была и промежуточная, тоже уже цифровая, технология между ILA и D-ILA, не получившая распространения - FO-ILA, - где управляющая электронно-лучевая трубка была заменена пучком световодов на основе оптоволокна (Fiber Optic), которые передавали модулирующий сигнал с поверхности монохромного монитора.

Первая волна

Вторая волна

Philips

Sony

Первый SXRD-проектор (на основе чипа собственной разработки) компания Sony продемонстрировала в июне 2003 года. В следующем году Sony анонсировала проекционной телевизор на основе технологии SXRD. К 2008 году компания отказалась от выпуска всех проекционных телевизоров, включая модели на основе технологии SXRD. Но от выпуска проекторов компания не отказалась. Сегодня Sony выпускает проекторы для больших инсталляций и цифрового кино разрешением до 4096×2160 (на основе чипа -SXRD) и светосилой до 21 000

LCoS (Жидкие Кристаллы на Кремнии) – своеобразный гибрид 3LCD и DLP. Многие компании имеют собственные обозначения для своих вариантов этой технологии проекторов: у Sony - SXRD, у JVC"s - D-ILA, у Epson – «reflective 3LCD» (отражающий 3LCD). Понятие «Отражающий 3LCD» отлично иллюстрирует принцип работы LCoS: представьте себе 3LCD проектор, в котором жидкокристаллические матрицы расположены на зеркальных поверхностях, в результате отражая часть света, формируя таким образом изображение для каждого из основных цветов: красного, зелёного и синего. Как и в 3LCD, свет лампы разделяется дихроичными зеркалами на три основных цвета, после чего изображение формируется, частично отражаясь от LCoS чипа благодаря расположенной на его поверхности ЖК матрице. На полупроводниковой подложке LCoS-кристалла расположен отражающий слой, поверх которого находится жидкокристаллическая матрица и поляризатор. Под воздействием электрических сигналов жидкие кристаллы либо закрывают отражающую поверхность, либо открываются, позволяя свету от внешнего направленного источника отражаться от зеркальной подложки кристалла.

Отражённые от LCoS панели, три цветовых компонента вновь объединяются в призме и проецируются на экран.
Преимущества LCoS:

    Одним из преимуществ LCoS технологии является как раз то, что управляющие элементы расположены за светоотражающим слоем, уменьшая расстояние между элементами матрицы, таким образом уменьшая и сетчатость изображения по сравнению с DLP и 3LCD.

    Технология LCoS создана, чтобы вобрать в себя всё лучшее из конкурирующих технологий LCD и DLP. В целом, она превосходит DLP и LCD по таким параметрам, как цветовоспроизведение, яркость, формат изображения, оптическая эффективность проекторов LCoS выше, чем у конкурирующих технологий.

Ограничения LCoS:

    На данный момент технология LCoS используется, в основном, в топовых проекторах для домашнего кинотеатра и не может конкурировать по цене в таких областях, как образование и бизнес. Однако, с расширением рынка проекторов для дома и постоянным снижением стоимости LCoS можно предположить, что постепенно этот недостаток сойдёт на нет.

Led проекторы

UHP (сверхвысокого давления) лампы – стандартный источник света в проекторах. Они работают на высоких температурах (до 900 ○ С) и их основным преимуществом является яркость: лампа в 150 Ватт может давать световой поток около 9000 Люмен. Яркость позволяет пробиться через дневной свет в помещении и получить чёткое изображение. У UHP ламп следующие недостатки:

    Сравнительно небольшой срок службы – обычно до 6000 часов

    Высокая стоимость лампы

    Высокое (неэффективное) энергопотребление из-за выделения тепла

    Необходимость в охлаждении увеличивает габариты проектора

    Ухудшение изображения со временем, со временем требующее дополнительную регулировку

    Чувствительность к шокам и ударам

Светодиоды не имеют этих недостатков:

    В десятки раз больший срок жизни лампы, что упрощает уход за проектором.

    Низкое энергопотребление

    Как следствие, возможность работы на аккумуляторах

    Мгновенное включение/выключение, не нужно ждать, пока лампа остынет

    В десятки раз больший срок службы, пониженные расходы на обслуживание

    Низкое энергопотребление

    Изображение не меняется со временем, не нужно перенастраивать проектор

    Большая надёжность

    Но при этом – значительно меньший световой поток (яркость).

Вышеперечисленные достоинства сделали LED лампы предпочитаемым решением для миниатюрных проекторов. Используя 3-LED, можно получить более широкий цветовой диапазон и более качественную цветопередачу, чем с UHP лампами, что, наряду с ограничением по яркости, делает LED лампы всё более популярным решением в LCD, DLP, а теперь – и LCoS проекторах для домашнего кинотеатра, рассчитанных на эксплуатацию в затемнённых помещениях.

Существуют несколько способов применения светодиодов в проекторах:

    LED в качестве источника белого света, как и UHP лампы, требует разделение светового потока дихроичными зеркалами-фильтрами на базовые цвета.

    Использование трёх светодиодов позволяет отказаться от использования цветового колеса и дихроичных фильтров в DLP, 3LCD и LCoS проекторах (см. рисунок). Использование цветового колеса из светодиодов в DLP проекторах.

Пример использования LED вместо цветового колеса DLP проектора.

Судя по статистике, эта тема интересна очень многим читателям и я с радостью ее продолжу.

Сегодня, как я и обещал, речь пойдет о технологии LCD, а точнее 3LCD (почему так расскажу ниже).

Если обратиться к великой и ужасной Wiki, то история возникновения LCD-проекторов уходит в 70-80е годы прошлого века, когда некий американский изобретатель Gene (Eugene) Dolgoff (судя по имени и фамилии коренной американец ) начал разработку и воплотил в жизнь конструкцию LCD-проектора, способного побороться с тогдашним “Богом” проекторов — устройством на базе ЭЛТ(электоронно-лучевая трубка).

Соответственно, первые LCD-проекторы содержали одну ЖК-матрицу, схожую с теми, что используются в телевизорах. Плюсом такой схемы была простота. Но фактически сразу выявился недостаток — с увеличением мощности источника света, которая была необходима для увеличения светового потока, и как следствие яркости изображения, LCD-панель начинала перегреваться. Результатом “работы над ошибками” стало появление в 1988 году технологии под названием 3LCD, а в 1989 году сразу 3 компании Epson, InFocus и Sharp выпустили первые проекторы на ее основе.

Что же придумали инженеры, и откуда взялось название 3LCD?

Принцип работы 3LCD-проектора. Для формирования изображения в 3LCD-проекторе установлена система линз, дихроичных зеркал и три ЖК-матрицы. Работает это всё так. Свет от источника (в случае с LCD-проектором это всегда лампа, т.к. единственный представленный компанией Epson прототип LCD LED-проектора так и не пошел в массы) падает на установленные в оптическом блоке, так называемые, дихроичные зеркала. Эти зеркала (фильтры) пропускают свет одного из цветов (свет в определенном спектре) и отражает оставшуюся часть света. Проходя через систему зеркал, свет делиться на 3 основные составляющие R, G, B (красный, зеленый и синий), каждый из цветов попадает на предназначенную для него ЖК-матрицу.

Сами по себе матрицы, установленные в ЖК-проекторе — монохромные (т.е. формируют черно-белое изображение). Работают они так же как и в ЖК ТВ, т.е., в отличие от DLP-чипа, не отражают, а пропускают свет, и при большом увеличении, образно, представляют из себя решетку, где прутья несут на себе управляющие каналы, а пустоты между прутьями — пиксели — точки изображения.

Вот эти самые пиксели могут закрываться и открываться, тем самым пропуская либо не пропуская свет (либо пропуская его частично). При попадании на матрицу света одного из цветов, ЖК-панель формирует изображение этого цвета и посылает его в призму, где изображения трех цветов складываются в полноцветное изображение, далее посылемое через объектив на экран. Отсюда и название 3LCD. Надеюсь, что описание понятно, а если нет — смотрите видео, описывающее мою тираду наглядно.

Такая схема, как обычно, имеет свои преимущества и недостатки.

Благодаря тому, что изображение формируется внутри проектора, и на экран попадает уже “слепленным”, а не выводится по цветам, есть мнение, что изображение от ЖК-проекторов меньше напрягает зрение. В Японии даже проводились исследования на эту тему, и они, вроде как, доказали этот факт, но каких-либо подтверждений тому у меня нет, равно как и доказательств обратного. Но факт остается фактом, в LCD и LCOS-проекторах картинка проецируется на экран полноцветной, в одноматричных DLP-проекторах она представляет из себя последовательность цветных изображений, складываемых в мозгу.

Одним из преимуществ, вытекающих из абзаца выше, является отсутствие “эффекта радуги”, о котором я рассказывал в посте про DLP-проекторы. Здесь его не может быть как такового.

Следующий положительный момент в трех-матричной системе является постоянство и высокая яркость цветного изображения. Я уже рассказывал, что когда речь идет об офисных DLP-проекторах, производители, для увеличения яркости используют белый сегмент в цветовом колесе, который портит цветопередачу. В случае с LCD-проектором свет также поглощается компонентами системы, но в итоге, по эффективности при выводе цветного изображения LCD-проекторы оказываются выгоднее, а качество их цветопередачи не зависит от яркости проектора.

Недостатками LCD-проекторов называют несведение, низкий уровень черного и низкую контрастность, так называемый Screen door effect и «выгорание матриц».

Несведение . На самом деле этот недостаток проявляется достаточно редко. Заключается в появлении на изображении цветных контуров объектов. Дело в том, что, как вы уже знаете, в проекторе используется три матрицы, каждая из которых отвечает за свой цвет. Если установить эти матрицы недостаточно точно по отношению друг к другу, то картинка одного цвета будет чуть «съезжать» по отношению к изображениям других цветов, тогда, например, можно справа от объекта увидеть синий контур, а слева — красный. К счастью, производители LCD-проекторов очень точно настраивают положение панелей, несмотря на их крохотный размер (а представьте какого размера пиксели в них!), поэтому такое несведение обычно не превышает полпикселя (такой контур можно увидеть только вплотную подойдя к экрану, и это абсолютно никак не сказывается на изображении). Но конечно бывают случаи, когда несведение может составлять и 2, и 3, и более пикселей. В таком случае пользователю прямая дорога в сервис или к продавцу.

Контрастность и уровень черного. DLP-проекторы, появившись в 1996 году произвели фурор в плане черного цвета и контрастности, и с первых дней, со стороны поклонников этой технологии и производителей DLP-проекторов пошла активная пропаганда данного преимущества над “старичками” в лице LCD-устройств. И вправду, увидеть разницу в черном цвете между DLP и LCD-проекторами можно было невооруженным глазом. Там где “Черный квадрат” Малевича на DLP-проекторе выглядел действительно приближенным к чёрному, LCD-проекторы выдавали откровенную серятину. Производители LCD-матриц начали модификацию своих панелей, и на сегодня, сменилось порядка десяти поколений этих устройств (DMD-чипы сменили 4 поколения). И один из пунктов, который улучшался от поколения к поколению был уровень черного и контрастность. На сегодня можно констатировать, что в проекторах для домашнего кинотеатра, лучшие представители LCD-лагеря не уступают, а иногда и превосходят своих “DLP-друзей” в плане контрастности и уровня черного. В офисной сфере и в образовании разрыв в цифрах и просмотре в темноте остается, но во-первых он уже не так заметен, а во-вторых — черный цвет и контрастность во время презентаций в условиях внешней засветки не так важны, ведь черного цвета на белом экране при свете в принципе нет и быть не может.

Screen door effect. Этот излюбленный пункт ярых “DLPишников” меня “радовал даже во времена, когда мониторы были квадратными, а о 720р проекторе можно было только мечтать. Screen door effect — это так называемый “эффект решетки”. Всё дело в том, что расстояние между пикселями у DMD-чипа, LCD-чипа и LCOS-чипа разное. Это связано с управлением чипами: в LCOS и DMD управление работой отдельных пикселей осуществляется “сзади” чипа, в то время как у “просветной” LCD -технологии такое невозможно, и для управления ячейками чипа необходима прокладка управляющих каналов между ними. Таким образом расстояние между пикселями в LCOS-панели минимально, а полезная площадь чипа максимальна. В LCD — наоборот, минимальная из трех технологий полезная площадь чипа и максимальное расстояние между точками изображения. DLP находится между ними.

Несмотря на то, что разрешение проекторов растет, некоторые производители DLP-проекторов продолжают упирать на то, что при просмотре изображения от LCD-проектора на экране можно увидеть решетку. Если сидеть в упор к экрану — я с этим соглашусь. Но если смотреть изображение с адекватного расстояния... При разрешении SVGA на экране в 2 метра шириной мы имеем пиксель размером 2,5 мм, а расстояние между ними составляет чуть меньше миллиметра, и при желании и расстоянии до 3 метров от экрана решетку увидеть можно. При XGA разрешении размер пикселя становится менее 2 мм, при WXGA — 1,5мм, при FullHD — 1 мм. О каких пикселях и решетках можно говорить? Безусловно, можно увидеть пиксели и на Retina дисплее iPhone... С лупой! Но зритель смотрит не на пиксели, а на картинку, а тут уже, при нормальном качестве контента, никаких пикселей не замечаешь.

«Выгорание матриц». Вы когда-нибудь наблюдали на проекторе желтое изображение? Нет, не в смысле желтый лимон на картинке, а всё изображение, отдающее жёлтым! Для такого казуса может быть три причины.

Сигаретный дым. Зачастую в барах, висят проекторы. Если в зале, где висит проектор, разрешено курить, через некоторое время после установки проектор начинает желтить.

Всё дело в сигаретном дыме и смолах, в нем содержащихся. Оседая на оптические компоненты проектора они превращаются в желтый налёт, который делает изображение желтым и снижает яркость. И не важно какая используется технология (отдельные производители DLP-проекторов заявляют, что у них герметичный оптический блок, поэтому Эта проблема их не касается, смола оседает повсюду, в том числе и на объективе) — рано или поздно изображение потускнеет и пожелтеет. А очистить оптику от этой гадости еще та проблема, поэтому в баре лучше изолировать проектор от курильщиков по максимуму.

Неправильная настройка. Тут всё банально — например выставлена слишком низкая цветовая температура и вуаля, изображение слишком теплое.

Ну и наконец, «выгорание матриц» у LCD-проектора. А конкретно, деградация поляризатора ЖК-панели, отвечающей за формирование синей составляющей изображения, в результате чего изображение недополучает синего цвета и, как следствие, появляется желтизна.

В своё время компания TI (Texas Instruments) — производитель DMD-чипов и главный оппонент LCD-производителей на рынке, провела исследование, которое показало, что деградация происходит уже через 3000 часов. Вот только условия, в которых эти исследования проводились представляются очень спорными. Они взяли самые компактные, а значит, предназначенные для выездных мобильных презентаций, проекторы и запустили их в круглосуточном режиме. Производители подобной техники никогда не заявляют, что она рассчитана на круглосуточную работу, а мобильные проекторы вообще, обычно, используют не более 3-4 часов в сутки.

В обычных условиях работы, деградация происходит гораздо позже — это раз. 3000 часов — это 3 года ежедневных (по будням) четырехчасовых презентаций — это два. С момента проведения опыта, а проводился он, если мне не изменяет память, году в 2004—2005, много воды утекло и 5 поколений LCD-панелей сменилось — это три. Сегодня, на подобные высказывания, я бы внимания уже не обращал.

Для справки: дома, уже 5 лет использую LCD-проектор — у меня не то чтобы желтизна появилась, даже лампу еще не менял (это к слову о боязни пользователей. что лампу нужно часто менять)!

Ну и напоследок, давайте вернемся к хорошему. Еще одно существенное преимущество LCD-проекторов — сдвиг линз. Конечно, система сдвига объектива может быть установлена фактически в любом проекторе (обычных размеров), но только в LCD-проекторах “начального” уровня она присутствует, в то время как в DLP и LCOS-стане, это будут устройства другого ценового диапазона. Почему я употребил ковычки? Потому, что на сегодняшний день самый доступный из FullHD-проекторов со сдвигом линз стоит порядка 50 тысяч рублей.

Я уже не раз говорил про “Сдвиг линз”, в том числе в предыдущей статье цикла про DLP-проекторы, но еще раз напомню, что это такое. Если в проекторе есть сдвиг линз (Lens Shift) или, как его еще называют “Сдвиг объектива” это означает, что в проекторе присутствует система линз, которая позволяет перемещать изображение, не перемещая сам проектор. Сдвиг бывает вертикальным и горизонтальным. Вертикальный сдвиг линз имеет больший диапазон, чем горизонтальный и встречается гораздо чаще (до недавнего времени, в DLP-проекторах среднего уровня встречался только он, а горизонтальный добавлялся в моделях верхнего уровня). В чем его функция? В упрощении установки проектора. Представьте себе ситуацию, что нет возможности установить проектор по центру экрана, но есть сдвиг линз. В этом случае проектор устанавливается, например, слева от экрана, а картинка сдвигается вправо колесиком, рычажком или кнопкой на корпусе или пульте ДУ (в зависимости от модели проектора). Соответственно, сдвиг линз может быть ручным (колесико) или моторизованным (кнопка). В отличие от простого поворота или наклона проектора, в случае со сдвигом линз не возникает трапецеидальных искажений, требующих электронной коррекции, вносящей искажения в оригинальное изображение. Пример работы ручного сдвига линз приведен в видеоролике.

Штука мегаудобная!

Ну вот вроде бы и всё, что я хотел рассказать о 3LCD-проекторах. Если что-то забыл — комментарии приветствуются.

Следующая статья из данного цикла будет посвящена LCOS. Не переключайтесь

Все проекторы, а также экраны, лампы, крепления и другие аксессуары — в моём .

Хочешь получать другие статьи и новости на почту? .

SXRD – новая технология формирования изображения в проекционных устройствах от Sony

Sony Corporation объявила о разработке устройства SXRD (Silicon X-tal1) Reflective Display – «Отражающий микро-дисплей на кремниевых кристаллах»). Оно представляет собой жидкокристаллическую панель, предназначенную для использования в мультимедиа проекторах, которая обеспечивает контрастность более 3000:1 при высокой четкости изображения, соответствующей полному стандарту ТВЧ (1920 H x 1080 V).

Великолепное качество изображения, формируемого панелью SXRD, достигается благодаря большому числу пикселов в пределах площади изображения. Размер каждого отдельного элемента изображения и межэлементный зазор были доведены до минимально возможных значений. Комбинация совершенно новой технологии Silicon Driving Circuit и нового технологического процесса Silicon Wafer Process Technology (технологический процесс на кремниевой решетке), объединенная с еще одной новой технологией Liquid Crystal Device (устройство на жидких кристаллах), позволила довести число элементов изображения до 2 000 000, размещенных с шагом 9 мкм и зазором всего 0,35 мкм. По сравнению с высокотемпературными жидкими кристаллами поликристаллического кремния выигрыш по плотности элементов составил 2,4 раза, а межэлементный зазор уменьшен в 10 раз. На основе этих достижений было получено изображение очень высокого качества, с четкостью, которая прежде была просто недостижимой в проекционных устройствах с фиксированным числом элементов. В результате было достигнуто прекрасное кинематографическое качество и обеспечена весьма хорошая равномерность изображения, на котором полностью отсутствует эффект «зернистой сетки», до сих пор замечавшийся в ЖК-проекторах.

Также, в устройстве Sony SXRD вместо скрученных нематических жидких кристаллов, Sony применила материалы, названные Vertically Aligned Liquid Crystal (вертикально выровненные жидкие кристаллы). Эти новые технические решения реально обеспечили малое время отклика, составляющее всего 5 миллисекунд и чрезвычайно высокий уровень контрастности панели, достигающий 3000:1 - примерно в три раза выше по сравнению с традиционными ЖК-проекторами.